z-logo
Premium
Experimental analysis of viscoelastic properties in carbon black‐filled natural rubber compounds
Author(s) -
Sajjayanukul Tibhawan,
Saeoui Pongdhorn,
Sirisinha Chakrit
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.21855
Subject(s) - carbon black , rheometer , viscoelasticity , natural rubber , vulcanization , materials science , composite material , filler (materials) , loss factor , rheology , dynamic shear rheometer , dielectric , optoelectronics
Processability and viscoelastic properties of natural rubber (NR) compounds filled with different carbon black loadings and types were investigated with the use of a steady shear rheometer, namely, the Mooney viscometer, and an oscillatory rheometer, namely, the Rubber Process Analyser (RPA2000). It was found that the type and amount of carbon black strongly influence the viscoelastic properties of rubber compounds. Both the dilution effect and filler transient network are responsible for the viscoelastic properties, depending on the vulcanization state. In the case of uncured compounds, the damping factor of the uncured NR decreases with increasing black loading. This is attributed to the reduction of mobilized rubber content in the compound (or the dilution effect). However, in the case of the cured NR vulcanizates, the filler transient network is the dominant factor governing the damping factor of the vulcanizate. With increasing black loading, the damping factor of the vulcanizate clearly increases. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2197–2203, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here