z-logo
Premium
Molecular‐imprinted nylon membranes for the permselective binding of phenylalanine as optical‐resolution membrane adsorbents
Author(s) -
Takeda Kohei,
Abe Masanori,
Kobayashi Takaomi
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.21753
Subject(s) - membrane , polymer chemistry , adsorption , materials science , formic acid , phenylalanine , chemical engineering , chromatography , chemistry , organic chemistry , amino acid , biochemistry , engineering
Nylon 6, nylon 6,6, and terephthalic phenylene polyamide (TPPP) were functionalized by phase‐inversion molecular imprinting to add L ‐phenylalanine recognition ability. Formic acid containing 20 wt % nylon and 8 wt % L ‐phenylalanine was used as the solvent for the cast solution of the imprinting process. The resultant porous membranes behaved as membrane adsorbents that separated the L / D mixture of the substrate. The imprinted nylon 6 and nylon 6,6 presented high selectivity to the L ‐form substrate with respect to the TPPP membranes, but the imprinted TPPP membranes showed higher binding capacity with 0.57 μmol/g for L ‐phenylalanine. The apparent partition coefficients of L ‐ and D ‐forms by the imprinted membranes were 6.8, 4.2, and 1.7 for nylon 6, nylon 6,6, and TPPP, respectively. The separation manner of the L ‐ and D ‐forms from the mixture was also confirmed by membrane filtration under 1.5 kgf/cm 2 of applied pressure. The imprinted nylon 6, nylon 6,6, and TPPP membranes had separation factors of L ‐ and D ‐phenylalanines of 1.1, 1.1, and 1.2, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 620–626, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom