z-logo
Premium
Crystallization behavior of poly(butylene succinate)/corn starch biodegradable composite
Author(s) -
Ohkita Tsutomu,
Lee SeungHwan
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.21741
Subject(s) - crystallization , differential scanning calorimetry , materials science , polybutylene succinate , avrami equation , composite number , activation energy , composite material , polymer chemistry , chemical engineering , kinetics , polymer , thermodynamics , chemistry , crystallization of polymers , physics , quantum mechanics , engineering
Abstract The effects of corn starch (CS) filler and lysine diisocyanate (LDI) as a coupling agent on the crystallization behavior of a poly(butylene succinate) (PBS)/CS ecocomposite were investigated using differential scanning calorimetry. In isothermal crystallization, n values for pure PBS were from 2.33 to 2.82. On the other hand, both composites showed values of 3 < n < 4. In nonisothermal crystallization, the Avrami exponent varied from 2.12 to 2.55 for pure PBS, from 1.58 to 1.96 for the composite without LDI, and from 1.79 to 1.91 for the composite with LDI, depending on the cooling rate. There was not a large difference of the crystallization rate constant ( k ) as adjusted by the Jeziornay suggestion. The activation energy for nonisothermal crystallization was also calculated on the basis of three different equations (Augis–Bennett, Kissinger, and Takhor equations). However, the values of the activation energy were in contradiction with the results of the kinetics. The addition of the filler (CS) and coupling agent (LDI) affected the morphological structure of PBS spherulites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1107–1114, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here