Premium
Morphology of epoxy resin modified with silyl‐crosslinked urethane elastomer
Author(s) -
Liu Pinggui,
He Lihua,
Ding Heyan,
Liu Junneng,
Yi Xiaosu
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.21710
Subject(s) - epoxy , materials science , elastomer , curing (chemistry) , polycaprolactone , silicone , composite material , bisphenol a , silylation , polymer chemistry , polymer , chemistry , organic chemistry , catalysis
Silyl‐crosslinked urethane elastomer modifying epoxy resin has drawn much interest. Here the triethoxysilyl‐terminated polycaprolactone elastomer (PCL‐TESi) modifying diglycidylether of bisphenol A epoxy resins (DGEBA) system was chosen, and then the effect of the type of curing agent on the phase structure of the studied epoxy resin system was investigated. The modified systems were obtained with different phase structures by varying the formulations of the curing agent. It was experimentally shown that with the addition of aminosilane (KBE‐9103), the crosslinked density was greatly increased. The cured system also showed from SEM and TEM analysis that addition of KBE‐9103 increased the compatibility between the PCL‐TESi and DGEBA, which made the ductility of the system decrease, but also indicated from TEM that addition of much KBE‐9103 made the reacted silicone particles coagulate each other. The state of phase separation from TEM in the cured system was theoretically explained. These would serve the deeper studies of the mechanism of silyl‐crosslinked urethane elastomer modifying epoxy resin in the future. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 611–619, 2005