Premium
Thermal degradation kinetics of polyesters containing mesogenic aromatic diols
Author(s) -
Mule S. A.,
Ghadage R. S.,
Jacob N. E.,
Rajan C. R.,
Ponrathnam S.
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.21587
Subject(s) - polyester , thermogravimetric analysis , condensation polymer , thermogravimetry , activation energy , thermal decomposition , thermal stability , polymer chemistry , kinetics , materials science , decomposition , diol , chemical decomposition , chemistry , organic chemistry , polymer , inorganic chemistry , physics , quantum mechanics
A series of polyesters were synthesized by reacting structurally differing aromatic diols with either saturated (flexible) or unsaturated (rigid) dicarboxylic acid halide by a stirred interfacial polycondensation technique. Thermal degradation kinetics of these polyesters were investigated by applying Coats–Redfern and Horowitz–Metzger nonisothermal procedures. The dynamic thermogravimetry experiments were conducted in nitrogen to obtain differential thermogravimetric plots. Thermal stability of these polyesters was discussed on the basis of semiquantitative methods such as differential procedural decomposition temperature, integral procedural decomposition temperature, and fraction decomposition temperature (e.g., 10% DT). Degradation proceeded in multiple stages. The thermal degradation patterns and activation energies in these stages were discussed in relation to central bridging moieties of aromatic diol. The activation energies of these polyesters were found to be in the range of 100 to 200 kJ/mol. The effect of spacer type on activation energy was also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 784–792, 2005