z-logo
Premium
Curing behavior, mechanical properties, intermolecular interaction, and morphology of silicone/polypyrrole/polymer electrolyte composites
Author(s) -
Chiu HsienTang,
Wu JyhHorng
Publication year - 2006
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.21334
Subject(s) - materials science , composite material , curing (chemistry) , silicone , polypyrrole , polymer , electrolyte , interpenetrating polymer network , scanning electron microscope , intermolecular force , polymerization , electrode , molecule , chemistry , organic chemistry
The curing behavior, mechanical properties, intermolecular interaction, and morphology of silicone, polypyrrole, and polymer electrolyte composites were studied. A rigid‐body pendulum rheometer was used to determine the curing behavior of silicone/PEL blends. The polymer structure was evaluated using FTIR and Differential Scanning Calorimetery. The mechanical properties, including stress, strain, and hardness, were measured using a material testing system. The morphology of the composites was measured using scanning electron micrographs. The intermolecular interaction of the composites was measurement using dynamic mechanical analysis. The results show that the curing reaction rate is fast upon addition of 10 wt % of polymer electrolyte for silicone. The linear molecular structure of the polymer electrolyte was wound around the silicone polymer network structure forming a semi‐interpenetrating network. The intermolecular interaction was influenced by the composites, and the Ppy film effect on the surface of SP10 blends is more uniform than that of silicone. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2754–2764, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here