z-logo
Premium
High modulus/tenacity filaments from blends of different molecular weights of polypropylene
Author(s) -
Chatterjee A.,
Deopura B. L.
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.21313
Subject(s) - tenacity (mineralogy) , materials science , crystallinity , polypropylene , composite material , extrusion , modulus , spinning , ultimate tensile strength , amorphous solid , melt spinning , protein filament , crystallography , chemistry
Polypropylene (PP) filaments are prepared by blending two different molecular weight components of PP. A melt‐spinning process to produce filaments includes mixing of components, extrusion, and two‐stage drawing, followed by a unique Gradient Drawing™ process. Blending results in highly deformable as‐spun filaments with high draw ratios. For 90:10 blends of PP samples with melt flow indexes of 35 and 3, a high level of crystallinity and crystalline and amorphous orientations are obtained. A sonic modulus of 28 GPa, dynamic modulus of 20 GPa, tensile modulus of 16 GPa, and tenacity of 667 MPa are achieved. These samples are dimensionally stable up to ∼100°C. All steps in the production of the filaments are continuous. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1021–1028, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom