Premium
Poly(propylene)/poly(ethylene terephthalate‐co‐isophthalate) blends and glass bead filled composites: Microstructure and thermomechanical properties
Author(s) -
Arencón D.,
Velasco J. I.,
RodríguezPérez M. A.,
de Saja J. A.
Publication year - 2004
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.21146
Subject(s) - materials science , crystallinity , composite material , microstructure , differential scanning calorimetry , maleic anhydride , nucleation , dynamic mechanical analysis , crystallization , glass transition , polymer chemistry , chemical engineering , polymer , copolymer , chemistry , physics , organic chemistry , engineering , thermodynamics
Abstract Blends of poly(propylene) (PP) and poly(ethylene terephthalate‐co‐isophthalate) (co‐PET) (95/5) with and without compatibilizing agent (maleic anhydride PP), as well as composites of these blends with glass beads (50 wt%) with and without silane coupling agent surface‐treatment, were prepared and studied on a basis of the material microstructure and thermomechanical properties. Infrared and Raman spectroscopy, as well as transmission electron microscopy, displayed evidence of MAPP compatibilizing action for the blend. Differential scanning calorimetry showed a remarkable effect of nucleation rate increase exerted by co‐PET on the PP crystallization. Moreover, glass beads were found to increase the PP nucleation rate slightly. PP crystallinity hardly varied with the composition. Wide angle X‐ray diffraction allowed determination of differences in the orientation of the poly(propylene) b‐axis, with more homogeneous orientations in the presence of both co‐PET and glass beads. MAPP promoted the PP b‐axis orientation. Differences in PP α′ relaxation could be analyzed through dynamic‐mechanical thermal analysis (DMTA). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1841–1852, 2004