Premium
Studies on mechanical and thermal properties of ternary blends of polyethylenes. I
Author(s) -
Srivastava Deepak
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.21127
Subject(s) - high density polyethylene , materials science , linear low density polyethylene , polyethylene , low density polyethylene , composite material , ultimate tensile strength , ternary operation , izod impact strength test , elongation , polymer blend , plastics extrusion , scanning electron microscope , polymer , copolymer , computer science , programming language
Six film samples of varying compositions of linear low‐density polyethylene (LLDPE), 10–35 wt %, and high‐density polyethylene (HDPE), 40–65 wt %, having a fixed percentage of low‐density polyethylene (LDPE) at 25 wt % were extruded by melt blending in a single‐screw extruder ( L / D ratio = 20 : 1) of uniform thickness of 2 mil. The tensile strength, elongation at break, and impact strength were found to increase up to 60 wt % HDPE addition, starting from 40 wt % HDPE, in the blends and then decreased. The blend sample B‐500 was found to be more thermally stable than its counterparts. The appearance of a single peak beyond 45 wt % HDPE content in the blend in dynamic DSC scans showed the formation of miscible blend systems and this was further confirmed by scanning electron microscopic analysis. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1691–1698, 2005