Premium
Aqueous polyurethane dispersions derived from polycarbonatediols
Author(s) -
Lee DaKong,
Tsai HongBing,
Wang HsineHsyan,
Tsai RueyShi
Publication year - 2004
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.21090
Subject(s) - polyurethane , ultimate tensile strength , isophorone diisocyanate , materials science , aqueous solution , glass transition , polymer chemistry , diol , composite material , chemical engineering , polymer , chemistry , organic chemistry , engineering
Aqueous polyurethane dispersions derived from polycarbonatediols, isophorone diisocyanate, and carboxylic diols including dimethylol propionic acid and dimethylol butyric acid were prepared. The effect of dispersing procedure is investigated by FT IR, GPC, and the tensile film properties. The polyurethane dispersions prepared by a standard procedure exhibit lower molecular weights due to the overhydrolysis of the NCO groups. The polyurethane dispersions prepared by a modified procedure exhibit significantly higher molecular weights due to more effective chain extension, and their cast films exhibit higher tensile strength. The particle size, tensile properties, thermal properties, and dynamic mechanical properties are investigated. The chemical structure of the polycarbonatediols seems to affect the tensile strength. The glass transition temperature of the soft segments, T g (S), of the polyurethane dispersions can be seem from the DSC and DMA data. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1723–1729, 2004