z-logo
Premium
Swelling behavior and pervaporation properties of new composite membrane systems: Porous polyethylene film‐poly(acrylic acid) hydrogel
Author(s) -
Buyanov A. L.,
Revel'Skaya L. G.,
Rosova E. Yu.,
Elyashevich G. K.
Publication year - 2004
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.21053
Subject(s) - pervaporation , membrane , swelling , acrylic acid , permeation , chemical engineering , polymer chemistry , materials science , copolymer , polyethylene , composite number , polymer , chemistry , composite material , biochemistry , engineering
A new type of composite membrane for pervaporation has been developed. These membranes were prepared by free‐radical copolymerization of acrylic acid with a macromolecular polyfunctional crosslinker (allylhydroxyethylcellulose) inside the porous polyethylene (PE) film. It was shown that the porous structure of the PE matrix is filled with poly(acrylic acid) (PAA), and a layer of acid is formed on the film surface. To investigate the effect of the porous matrix on the composite membrane properties, a hydrogel membrane of crosslinked PAA was also prepared without the matrix using the same procedure. PAA in both membranes was in the neutralized form (K + ). Swelling behavior of the membranes and their separation characteristics for pervaporation were investigated in water–ethanol solutions depending on the ethanol concentration. All membranes exhibited a high degree of equilibrium swelling ( Q = 20–50 g/g) in dilute ethanol solutions (0–30 vol %), and Q sharply dropped to 1.5–2 g/g at a EtOH concentration of 30–40 vol % due to collapse of the gel. All membranes under study were highly permeable and selective to water over a wide range of ethanol concentrations in the feed (50–96 vol %), but composite membranes had a higher separation factor due to the restriction effect of the matrix porous structure on swelling of PAA(K + ) inside the pores. However, composite membranes were characterized by a lower permeation rate, compared to the crosslinked PAA membranes without a matrix, because of their lower effective surface for diffusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1461–1465, 2004

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom