Premium
Study on the nonisothermal crystallization process of mLLDPE/EVA blends using FTIR micro‐spectroscopy
Author(s) -
Wu Tong,
Li Ying,
Wu Qiang,
Wu Gang,
Tan HuiMin
Publication year - 2005
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.20953
Subject(s) - linear low density polyethylene , crystallization , fourier transform infrared spectroscopy , materials science , polymer chemistry , enthalpy , vinyl acetate , copolymer , ethylene vinyl acetate , polymer blend , analytical chemistry (journal) , polyethylene , thermodynamics , chemical engineering , chemistry , composite material , polymer , organic chemistry , physics , engineering
The nonisothermal crystallization process has been investigated by Fourier transform infrared (FTIR) micro‐spectroscopy for the 40/60 wt % blends of metallocene linear low density polyethylene ( m ‐LLDPE) and ethylene/vinyl acetate copolymer (EVA) at the molecular level. In the cooling process, thermal spectra of mLLDPE/EVA blends were collected between 150°C and 67°C at 1°C interval. According to the van't Hoff equation at constant pressure, the changes of absorbance ratio corresponding to high and low vibrational states were calculated; hereby, apparent enthalpy differences of vibration energy states transformation (▵H v ) of characteristic groups could be obtained. Combining with DSC analysis, two exothermal peaks were examined in the crystallization process, corresponding to mLLDPE‐rich and EVA‐rich domains, respectively; while in comparison of the ▵H v values of various characteristic groups corresponding to the two exothermal peaks, the bending vibrational mode of methylene groups has been found to make a prominent contribution to the movement and regular arrangement of mLLDPE and EVA chain segments towards each rich domain in the crystallizing process. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 261–267, 2005