z-logo
Premium
Deacetylation of β‐chitin. I. Influence of the deacetylation conditions
Author(s) -
Chen ChengHo,
Wang FangYu,
Ou ZuPei
Publication year - 2004
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.20753
Subject(s) - differential scanning calorimetry , thermogravimetric analysis , acetylation , chitin , fourier transform infrared spectroscopy , diffraction , polymer chemistry , analytical chemistry (journal) , chemistry , infrared spectroscopy , materials science , nuclear chemistry , organic chemistry , chitosan , physics , thermodynamics , optics , biochemistry , gene
The influences of the deacetylation temperature, deacetylation time, and NaOH concentration on the degree of deacetylation (DD) of deacetylated products prepared from β‐chitin are discussed. The DD values of deacetylated products are related to the ratio of the signal intensities of methyl on acetyl groups and the first anomeric carbon, which are obtained from 13 C‐NMR spectra. The results show that the DD values of deacetylated product increase as the NaOH concentration, deacetylation time, or deacetylation temperature increases. The thermal properties, chemical structures, and crystalline characteristic of deacetylated products are significantly related to their DD values. Differential scanning calorimetry shows that the peak temperature is slightly increased as the DD values of deacetylated products of β‐chitin increase. Thermogravimetric analysis shows that the thermal degradation onset temperature of deacetylated products decreases as the DD values increase. Fourier transform infrared spectra show that the intensity of a specific absorption peak of NH 2 in deacetylated products significantly increases as DD increases. X‐ray diffraction patterns of deacetylated products with DD values of 17.5 and 44.7% have three significant diffraction peaks. However, there are only two diffraction peaks found in products with higher DD values of 76.5 and 94.7%. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2416–2422, 2004

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here