Premium
Properties of thermoplastic composites based on wheat‐straw lignocellulosic fillers
Author(s) -
Le Digabel F.,
Boquillon N.,
Dole P.,
Monties B.,
Averous L.
Publication year - 2004
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.20426
Subject(s) - polyolefin , materials science , composite material , polyester , polypropylene , natural fiber , ultimate tensile strength , straw , contact angle , vulcanization , fiber , natural rubber , chemistry , layer (electronics) , inorganic chemistry
Lignocellulosic fractions from wheat straw were used as natural fillers in composites of a polyolefin (a copolymer of polyethylene and polypropylene) and a biodegradable polyester [poly(butylene adipate‐ co ‐terephthalate)]. The mechanical properties of these injected composites were investigated with tensile and impact testing. A reinforcing effect of wheat‐straw residues was found for both types of composites. Compared with the polyester‐based composites, the polyolefin composites were more brittle. The addition of compatibilizing agents (γ‐methacryloxypropyltrimethoxysilane, maleic anhydride modified polypropylene, and stearic acid) did not improve the properties of the polyolefin composites. The surface properties were studied with contact‐angle measurements, and poor interfacial adhesion was found between the hydrophilic lignocellulosic filler and the hydrophobic polyolefin matrix. Thermal characterization revealed the formation of low intermolecular bonds between the polyester matrix and the lignocellulosic filler, in agreement with the surface tensions results and scanning electron microscopy observations. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 428–436, 2004