z-logo
Premium
Determination of monomer reactivity ratios using in situ FTIR spectroscopy for maleic anhydride/norbornene‐free‐radical copolymerization
Author(s) -
Pasquale Anthony J.,
Long Timothy E.
Publication year - 2004
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.20355
Subject(s) - comonomer , maleic anhydride , copolymer , reactivity (psychology) , polymer chemistry , monomer , fourier transform infrared spectroscopy , norbornene , materials science , chemistry , organic chemistry , polymer , chemical engineering , medicine , alternative medicine , pathology , engineering
Monomer reactivity ratios for maleic anhydride (MAH) and norbornene (Nb) free‐radical copolymerizations were estimated by using a linear graphical method, which is based upon the terminal model developed by Mayo and Lewis. Reactions were performed by using optimized reaction conditions that were previously determined. MAH/Nb copolymerizations (3 mol % AIBN initiator, 60% solids in THF, 65°C, 24 h). Copolymerization data were collected via in situ FTIR to low degrees of conversion (∼ 10%) for copolymerizations of MAH and Nb. The following five different MAH/Nb comonomer feed molar ratios were analyzed: 40/60, 45/55, 50/50, 55/45, and 60/40. Conversion data that were measured with in situ FTIR were employed in the rearranged copolymer composition equation to estimate MAH and Nb reactivity ratios. Both of the reactivity ratios were determined to be near 0 ( r MAH = 0.02, r Nb = 0.01), which was indicative of an alternating copolymerization mechanism. The highest observed rate constant for copolymerization was obtained at an equal molar concentration of monomers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3240–3246, 2004

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here