Premium
Oxygen permeation resistance of polyethylene, polyethylene/ethylene vinyl alcohol copolymer, polyethylene/modified ethylene vinyl alcohol copolymer, and polyethylene/modified polyamide–ethylene vinyl alcohol copolymer bottles
Author(s) -
Yeh JenTaut,
Huang ShyhShiuan,
Yao WeiHua,
Wang IngJing,
Chen ChengChi
Publication year - 2004
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.20215
Subject(s) - polyethylene , vinyl alcohol , copolymer , materials science , ethylene , polyamide , polymer chemistry , polymer , chemistry , organic chemistry , composite material , catalysis
The oxygen permeation resistance of polyethylene (PE), polyethylene/ethylene vinyl alcohol copolymer (PE/EVOH), polyethylene/modified ethylene vinyl alcohol copolymer (PE/MEVOH), and polyethylene/modified polyamide–ethylene vinyl alcohol copolymer (PE/MPAEVOH) bottles was investigated. The oxygen permeation resistance improved significantly after the blending of ethylene vinyl alcohol copolymer (EVOH) barrier resins in PE matrices during blow molding; less demarcated EVOH laminas were found on the fracture surfaces of the PE/EVOH bottles. Surprisingly, the oxygen permeation resistance of the PE/MEVOH bottles decreased significantly, although more clearly defined modified ethylene vinyl alcohol copolymer (MEVOH) laminas were found for the PE/MEVOH bottles as the compatibilizer precursor contents present in the MEVOH resins increased. In contrast, after the blending of modified polyamide (MPA) in EVOH resins, more demarcated modified polyamide–ethylene vinyl alcohol copolymer (MPAEVOH) laminar structures were observed in the PE/MPAEVOH bottles as the MPA contents present in the MPAEVOH resins increased. In fact, with proper MPAEVOH compositions, the oxygen permeation resistance of the PE/MPAEVOH bottles was even better than that of the PE/EVOH bottles. These interesting oxygen barrier and morphological properties of the PE, PE/EVOH, PE/MEVOH, and PE/MPAEVOH bottles were investigated in terms of the free volumes, barrier properties, and molecular interactions in the amorphous‐phase structures of the barrier resins present in their corresponding bottles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2528–2537, 2004