z-logo
Premium
Synthesis and characterization of polyacrylamidegrafted sodium alginate membranes for pervaporation separation of water + isopropanol mixtures
Author(s) -
Toti Udaya S.,
Aminabhavi Tejraj M.
Publication year - 2004
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.20187
Subject(s) - pervaporation , membrane , chemical engineering , polymer chemistry , polymer , grafting , chemistry , monomer , materials science , permeation , chromatography , organic chemistry , engineering , biochemistry
Polyacrylamide‐ grafted ‐sodium alginate copolymers were prepared by persulfate‐induced radical polymerization by using polymer‐to‐monomer ratios of 2 : 1 and 1 : 1. Polymers were characterized by Fourier transform infrared spectroscopy, differential thermal analysis, and viscosity. Membranes were prepared from the polymers, crosslinked with glutaraldehyde, and used in the pervaporation separation of water + isopropanol mixtures at 30°C. Equilibrium swelling experiments were performed for mixtures containing 10 to 80 mass % of water in the feed. Both the grafted copolymer membranes were ruptured while separating 10 mass % of water in the feed mixture. However, beyond 20 mass % of water in the feed mixture, flux increased with increasing grafting ratio, while selectivity decreased. Pervaporation separation experiments were carried out at 30, 40, and 50°C for 20 mass % of water in the feed mixture. By increasing the temperature, flux increased, whereas selectivity decreased. Arrhenius activation parameters for pervaporation and diffusion decreased with increasing grafting ratio of the membranes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2030–2037, 2004

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom