z-logo
Premium
Positive temperature coefficient behavior of polymer composites having a high melting temperature
Author(s) -
Kim Jungil,
Kang Phil Hyun,
Nho Young Chang
Publication year - 2004
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.20064
Subject(s) - materials science , composite material , temperature coefficient , carbon black , polymer , polyvinylidene fluoride , composite number , melting point , polyester , natural rubber
The positive temperature coefficient (PTC) behavior of polymers having a high melting temperature, such as nylon, polyvinylidene fluoride, polyester, and polyacetal, was investigated. Carbon black and nickel powder were used to investigate the influence of their conductive fillers on PTC intensity. The polymer/filler composite was irradiated with gamma rays at dosages of 50, 100, and 150 kGy for the purpose of reducing the negative temperature coefficient (NTC) of a conductive composite. It was found that the PTC temperature depended on the melting point of the polymer matrix. The crosslinking structure enhanced the electrical stability and decreased the NTC effect of the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 394–401, 2004

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here