Premium
Chemical modification of silk with itaconic anhydride
Author(s) -
Tsukada Masuhiro,
Goto Yohko,
Freddi Giuliano,
Shiozaki Hideki,
Ishikawa Hiroshi
Publication year - 1992
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1992.070451005
Subject(s) - fibroin , silk , crystallinity , chemical modification , itaconic acid , materials science , polymer chemistry , bombyx mori , solubility , thermal stability , chemistry , chemical engineering , organic chemistry , composite material , polymer , biochemistry , copolymer , gene , engineering
Abstract Bombyx mori silk fibers were chemically modified by acylation with itaconic anhydride. The reactivity of the modifying agent toward silk fibroin was investigated on the basis of the amino acid analysis. We examined the physical properties, the structural characteristics, and the thermal behavior of modified silk fibers as a function of the weight gain. Silk fibers with a weight gain of 9%, corresponding to an acyl content of 68.9 mol/10 5 g, were obtained at the optimum reaction conditions for silk acylation (75°C for 3 h). The amount of basic amino acid residues (Lys, His, and Arg) decreased linearly as the weight gain increased. The alkali solubility increased proportionally with the weight gain, probably due to the dissolution of the modifying agent reacted with silk fibroin, and not to the degradation of the fibers induced by the chemical modification. The birefringence value, related to the molecular orientation, slightly decreased when the weight gain increased. The isotropic refractive index, associated with the crystallinity, increased when the weight gain ranged from about 5 to 7% and then remained unchanged. The moisture regain did not change regardless of the chemical modification, and the crease recovery behavior of modified silk fabrics did not show significant improvement. The thermal behavior of silk fibers was affected by the modification with itaconic anhydride. The decomposition temperature shifted up to 322°C, 10°C higher than the control silk fibers, suggesting a higher thermal stability induced by chemical modification.