z-logo
Premium
Extruded blends of a thermotropic liquid crystalline polymer with polyethylene terephthalate, polypropylene, and polyphenylene sulfide
Author(s) -
Heino Markku T.,
Seppälä Jukka V.
Publication year - 1992
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1992.070441215
Subject(s) - materials science , thermotropic crystal , ultimate tensile strength , composite material , polypropylene , polyethylene terephthalate , polymer , polymer blend , polyethylene , rheology , plastics extrusion , copolymer , liquid crystalline
Structure–property relationships were investigated for blends of a polyester‐type thermotropic liquid crystalline polymer (LCP) with polyethylene terephthalate (PET), polypropylene (PP), and polyphenylene sulfide (PPS). The polymers were melt blended in a twin‐screw extruder and the blends were extruded to strands of different draw ratios. Tensile properties of the blends were determined as a function of LCP content and draw ratio and compared with the results of morphological and rheological analyses. In general, the strength and stiffness of the matrix polymers were improved with increasing LCP content and draw ratio. At a draw ratio of 11, the blends of PET/30 wt % LCP exhibited a tensile strength about three times and an elastic modulus nearly four times that of pure PET. All blends exhibited a skin/core morphology with thin fibrils in the skin region. The formation and the sizes of the fibril‐like LCP domains in the matrices were found to depend on LCP content and the viscosity ratio of the blend components.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here