z-logo
Premium
Simulation of microstructure development in injection molding of engineering plastics
Author(s) -
Yu Jeong S.,
Wagner Alan H.,
Kalyon Dilhan M.
Publication year - 1992
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1992.070440313
Subject(s) - materials science , residual stress , molding (decorative) , composite material , thermoelastic damping , mold , constitutive equation , stress (linguistics) , stress relaxation , birefringence , compression (physics) , relaxation (psychology) , phenomenological model , thermal , thermodynamics , finite element method , creep , optics , psychology , social psychology , linguistics , philosophy , physics , quantum mechanics
Mathematical models were developed to predict the various microstructural properties, including birefringece, residual stress, and density distributions, in the freely quenched compression molded samples as well as in the injection molded samples. To model the birefringence distribution in the injection molded samples, the BKZ type integral constitutive equation was employed to account for the nonisothermal stress relaxation, which takes place during the cooling stage of the molding cycle. The predicted birefringence agreed well with the experimental data near the mold walls. The residual stress distribution was modeled by the existing thermoelastic theory. The residual thermal stress distribution in the freely quenched samples was predicted very well by the model. However, the predicted residual thermal stresses in the injection molded samples were much larger than the measured ones. A phenomenological model to predict the density distribution in injection molded sample is proposed by including the effects of both cooling rate and the pressure on the density development. The predicted results agreed well with the experimental data.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here