z-logo
Premium
Hierarchical structure in LCP/PET blends
Author(s) -
Silverstein M. S.,
Hiltner A.,
Baer E.
Publication year - 1991
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1991.070430113
Subject(s) - materials science , ultimate tensile strength , composite material , elongation , polymer , polymer blend , copolymer
Abstract The structural hierarchy in injection molded blends of poly(ethylene terephthalate) (PET) and a commercial liquid crystal polymer (LCP), two immiscible polymers, was characterized at various blend compositions. The macroscopic core and skin have a gradient structure and are subdivided into ordered and disordered layers. The sublayers consist of rodlike domains at 25% LCP. The domains become thinner, longer, and more fibril‐like with increasing LCP concentration. The interconnection between the LCP domains also becomes more significant at higher LCP concentrations. The highest degree of orientation in the injection direction is at the mold surface and the lowest at the sample center. The LCP orientation reflects the elongational and fountain flow in the mold and increases with increasing LCP concentration. Schematic structural models were used to illustrate the levels of structure in these blends. A minimum exists in the tensile strength, elongation at break, and impact strength with varying blend composition at approximately 50% LCP. The tensile strength of the LCP‐rich blends is significantly lowered by the presence of a weldline or an angle between the stress and orientation directions. The unique mechanical properties of the LCP depend on the formation of a highly oriented and highly connected hierarchical structure that does not exist in blends with 75% or less LCP.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here