Premium
Solvent‐ and glow‐discharge‐induced surface wetting and morphological changes of poly(ethylene terephthalate) (PET)
Author(s) -
Hsieh YouLo,
Timm Debra A.,
Wu Meiping
Publication year - 1989
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1989.070380911
Subject(s) - glow discharge , wetting , solvent , contact angle , polyethylene terephthalate , materials science , argon , ethylene , analytical chemistry (journal) , chemical engineering , chemistry , composite material , organic chemistry , catalysis , plasma , engineering , physics , quantum mechanics
The effects of argon glow discharge and selected organic solvents on the surface wettability of poly(ethylene terephthalate) (PET) and on the wettability decay of glow discharged PET films were studied. Glow discharge in argon (30 W/1 min) drastically reduced the initial water contact angle (CA) measurement of PET from 67.0 to 26.2°. The glow‐discharge‐induced wetting, however, decayed during the first 7 days and stabilized at 33.1°. Treatments in dimethyl sulfoxide, dimethyl formamide, pyrdine, and water at 80°C caused some improvement in surface wettability as shown by decreases of water CAs in the range of 53–56°. When the solvent and glow discharge treatments were applied consecutively on PET, additive effects on improving surface wettability were observed. The stabilized water CAs of the solvent‐and‐glow‐discharged films ranged from 25.0 to 32.1° depending upon the solvent type. The solvent treatments prior to glow discharge either reduced the extent of CA decay or the time taken to reach stabilization on PET films. Scanning electron microscopic evaluation showed no difference between the solventtreated and the untreated PET surfaces, but a finely etched surface was observed on the glow discharged PET at a 40,000 magnification and above. The distinctly different surface of the DMSO‐and‐glow‐discharged PET indicated that morphological changes on PET surface were induced by the solvent.