Premium
Fourier transform infrared analysis of plasma‐polymerized hexamethyldisiloxane
Author(s) -
Krishnamurthy V.,
Kamel Ihab L.,
Wei Yen
Publication year - 1989
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1989.070380402
Subject(s) - hexamethyldisiloxane , polymer , contact angle , wetting , materials science , polymerization , fourier transform infrared spectroscopy , polymer chemistry , monomer , analytical chemistry (journal) , plasma polymerization , chemical engineering , phase (matter) , chemistry , composite material , plasma , organic chemistry , physics , quantum mechanics , engineering
The plasma‐induced polymerization of hexamethyldisiloxane onto solid surfaces is studied by FTIR. An inductively coupled RF reactor was used to produce the thin polymer coatings. Analysis of the plasma polymer indicates a long chain polysiloxane structure resulting from the removal of some methyl groups from the monomer structure. Increasing the plasma power level from 30 to 100 W increased the chain length in the resultant polymer as indicated by the widening and splitting of the Si–O stretching absorptions. Thermal aging of the vapor phase polymer at 120°C for 1 h in vacuum and at 410°C for 30 min in a nitrogen atmosphere revealed the removal of some methyl groups from the polymer structure with temperature. TGA runs on the vapor phase polymer at 20°C/min in air showed the polymer retaining almost 65% of its weight at 1000°C. The residue remaining after the TGA run had very little organic content and may represent a glass type silicate network. Wettability values determined on coated glass slides revealed the hydrophobicity of the coatings with water contact angle values > 100°. SEM micrographs showed uniform and featureless coating on glass fibers which was etched by boiling water and was attributed to the loss of vapor phase polymer on the surface.