Premium
Recovery of uranium from sea water. IV. Influence of crosslinking reagent of the uranium adsorption of macroreticular chelating resin containing amidoxime groups
Author(s) -
Egawa Hiroaki,
Nakayama Morio,
aka Takamasa,
Sugihara Eiichi
Publication year - 1987
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1987.070330613
Subject(s) - adsorption , uranium , reagent , chemistry , divinylbenzene , chelation , nuclear chemistry , specific surface area , ion exchange resin , microporous material , inorganic chemistry , organic chemistry , materials science , styrene , polymer , catalysis , metallurgy , copolymer
Macroreticular chelating resins (RNH) containing amidoxime groups with various degrees of crosslinking were synthesized by using various amounts of ethyleneglycol dimethacrylate (1G), dimethyleneglycol dimethacrylate (2G), triethyleneglycol dimethacrylate (3G), tetraethyleneglycol dimethacrylate (4G), and nanoethyleneglycol dimethacrylate (9G) as crosslinking reagent. The effect of crosslinking reagents on the pore structure, ion exchange capacity, swelling ratio, and adsorption ability for uranium of RNH was investigated. RNH (RNH–1G) prepared by using 1G were showed to have macroreticular structures by the measure of specific surface area. RNH–1G had the high adsorption ability and physical stability. Though RNH (RNH–4G) obtained by using 4G have little macroreticular structure (macropore), these resins showed the high adsorption ability for uranium by the treatment with 0.1 mol dm −3 NaOH at 30°C for 15 h (alkali treatment). These results suggest that the formation of not only the favorable macropore but also the micropore is important for the effective recovery of uranium in sea water, whereas RNH–4G was defined to be low physical and chemical stability. For the preparation of RNH which have effective pore structure for the recovery of uranium, chemical, and physical stability, the simultaneous use of divinylbenzene (DVB) and 1G or 4G as crosslinking reagent was examined (abbreviated as RNH–DVB–1G and RNH–DVB–4G). The specific surface area of RNH–DVB–1G increased with an increase of 1G used. These RNH–DVB–1G have been shown the high adsorption ability for uranium. On the other hand, the specific surface area and adsorption ability for uranium of RNH–DVB–4G decreased with an increase of 4G used. Repeated use did not cause the deterioration of both RNH–DVB–1G and RNH–DVB–4G. This result suggests that the simultaneous use of DVB and 1G or 4G contributed the improvement of chemical and physical stability. In particular, RNH–DVB–1G has the effective macropore and micropore for the recovery of uranium.