Premium
Characterization of products prepared by homogeneous grafting of styrene onto cellulose in a sulfur dioxide–diethylamine–dimethyl sulfoxide medium
Author(s) -
Tsuzuki Michikazu,
Hagiwara Ikuo,
Shiraishi Nobuo,
Yokota Tokuo
Publication year - 1980
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1980.070251221
Subject(s) - polysulfone , cellulose , copolymer , polymer chemistry , grafting , styrene , chemistry , polymer , hydrolysis , solvent , materials science , organic chemistry
Homogeneous graft copolymerization of styrene onto cellulose was carried out using a SO 2 –DEA–DMSO cellulose solvent reaction medium and γ‐ray mutual irradiation. The yield of grafted side chain polymer and the homopolymer in this reaction system proved to be polysulfone, a styrene–sulfur dioxide copolymer in which the number of sulfur atoms per polymer chain is 3–3.5. Several characterizations of the graft product were attempted. The graft products were extracted with boiling benzene for 24 hr to remove homopolymer, and then the cellulose backbones were hydrolyzed. After hydrolysis, the polysulfone residues were separated by thin‐layer chromatography (TLC) into two components, i.e., attendant homopolysulfone and the true side chain polysulfone having some sugar residues at one of the polymer chain ends. The weight fraction of these components for each graft product was determined by a TLC scanner. The molecular weight of the side chain polysulfone remained constant and significantly lower than that of the homopolysulfone throughout the reaction period. By assuming that no scission of cellulose chains occurred throughout the graft reaction, the number of branches per starting cellulose molecule was assessed to be surprisingly large, ranging from 2.4 to 10.6 at a total dose of 1–8 mR of irradiation. It was also found that percent grafting increased with irradiation time because of an increase in the number of branches per cellulose chain. Furthermore, we succeeded in separating the graft product into ungrafted cellulose and the true graft copolymer containing a small amount of attendant hompolysulfone.