z-logo
Premium
Fire‐retarding polypropylene with magnesium hydroxide
Author(s) -
Miyata Shigeo,
Imahashi Takeshi,
Anabuki Hitoshi
Publication year - 1980
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1980.070250308
Subject(s) - flexural strength , ultimate tensile strength , magnesium , materials science , composite material , izod impact strength test , composite number , polypropylene , flexural modulus , melt flow index , metallurgy , polymer , copolymer
Four types of magnesium hydroxide with different particle and crystallite sizes and different degrees of agglomeration were added at amounts up to 60% by weight to polypropylene to obtain a series of composites. The burning characteristics, tensile yield strength, flexural modulus, notched Izod impact strength, and melt flow index of the resulting composites were measured. Magnesium hydroxide coated with sodium stearate was found to give an increased melt flow index and impact strength to the composites as compared to values obtained with uncoated magnesium hydroxide. Incorporation of not less than about 57% by weight of magnesium hydroxide made the composite nonflammable, but at the same time considerably reduced its impact, flexural, and tensile yield strengths. As the amount of magnesium hydroxide filler was increased, the tensile yield strength and flexural strength of the composite proportionally decreased while the flexural modulus increased. The impact strength reached a maximum value when the amount of incorporation was 30% by weight. The lower the degree of agglomeration of the magnesium hydroxide filler and the greater the crystallite size within the range to about 2μm, the better were the mechanical properties of the composite.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here