z-logo
Premium
Plasma polymerization of tetrafluoroethylene. III. Capacitive audio frequency (10 kHz) and AC discharge
Author(s) -
Morosoff N.,
Yasuda H.,
Brandt E. S.,
Reilley C. N.
Publication year - 1979
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1979.070231204
Subject(s) - tetrafluoroethylene , plasma polymerization , materials science , inductively coupled plasma , polymer , capacitively coupled plasma , plasma , analytical chemistry (journal) , electrode , glow discharge , torr , chemistry , optoelectronics , polymerization , composite material , physics , chromatography , quantum mechanics , copolymer , thermodynamics
The plasma polymerization of tetrafluoroethylene (TFE) is studied in a capacitively coupled system with internal electrodes using a 10 kHz (af) and a 60 Hz (ac) source. The emphasis is on identifying conditions that are compatible with continuous coating of plasma polymer on a substrate moving through the center of the interelectrode gap. Operation at a pressure below 100 mTorr is most favorable for deposition of a substantial portion of the plasma polymer on this substrate. Plasma polymer deposited in this way is characterized by ESCA and by deposition rate data and compared to that deposited using rf power in both capacitively and inductively coupled systems. The polymers found in all systems are broadly similar and completely different from conventional poly(TFE). The distribution of power density in the various systems has been identified and compared. This is accomplished by using the known susceptibility of fluorine‐containing polymers (including plasma polymer) to a high‐power plasma as a probe of plasma power density within the interelectrode gap in the capacitively coupled system. The most active zone of the af or ac plasma is close to the electrode at a plasma pressure of approximately 40 mTorr. The use of a magnetic field leads to an intense localized glow such that etching by active fluorine atoms occurs at a specific locus on the electrode. By contrast, the low‐pressure rf capacitively coupled glow discharge is the mildest of those investigated, and its most active zone is further from the electrode and much more diffusely localized by a magnetic field.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here