z-logo
Premium
Microstructure and its relationship to deformation processes in amorphous polymer glasses
Author(s) -
Wellinghoff Stephen T.,
Baer Eric
Publication year - 1978
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1978.070220723
Subject(s) - crazing , glass transition , materials science , polymer , amorphous solid , polystyrene , microstructure , composite material , arylene , polymer chemistry , chemical engineering , crystallography , chemistry , organic chemistry , alkyl , aryl , engineering
The microdeformation morphology of a number of vinyl polymers with bulky side chains (type I) and arylene polymers with flexible oxygen linkages (type II) was studied by electron microscopy. The polyarylenes crazed only near the glass transition while the polyvinyls exhibited a crazing regime that extended to liquid nitrogen temperatures. In addition significantly less plastic strain was localized in type II glass crazes relative to those in type I glasses. In compatible blends of polystyrene (PS) and 2,6‐dimethyl poly(phenylene oxide) (2MPPO), ca. 30% 2MPPO was sufficient to induce a transition from type I to type II crazing behavior. Small amounts of PS suppressed the low‐temperature 2MPPO β relaxation but enhanced the intermediate transition of 2MPPO at higher temperatures. Blending increased the conformational energy of the 2MPPO chain and improved interchain packing. The propensity for the polymer glass to form sharp shear bands at the expense of diffuse bands was increased by a decrease in the conformation energy of the polymer chain and an improvement in the glassy state packing.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here