z-logo
Premium
The notch sensitivity of polymeric materials
Author(s) -
Takano Masaharu,
Nielsen Lawrence E.
Publication year - 1976
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1976.070200814
Subject(s) - materials science , composite material , brittleness , fracture (geology) , polymer , sensitivity (control systems) , stress (linguistics) , fracture mechanics , elongation , yield (engineering) , ultimate tensile strength , electronic engineering , engineering , linguistics , philosophy
Abstract Stress–strain tests were made on about five dozen polymeric materials using unnotched and notched specimens containing six different types of notches. Notches decrease the strength, but they decrease the elongation to break even more drastically in general. Notch sensitivity factors are defined for strength and for energy to fracture in such a manner that the greater the notch sensitivity factor, the greater is the effect of a notch relative to the unnotched material. The notch sensitivity factor for breaking (or yield) strength is not the same as the notch sensitivity factor for energy to fracture as measured by the area under the stress–strain curve. Brittle polymers and composites tend to have greater notch sensitivity factors for strength than ductile polymers. For brittle polymers, the notch sensitivity factor for energy to fracture tends to increase with the elongation to break of the unnotched polymer. Notches generally are more detrimental to ductile polymers than to brittle ones as far as the energy to fracture is concerned. For ductile polymers, the shape of the stress–strain curve is important in determining the sensitivity to notches. The ratio of the upper to lower yield strengths should be small for low notch sensitivity. It is desirable to have the breaking strength greater than the yield strength. Glass fibers and filler in ductile matrices increase the notch sensitivity for strength but decrease the sensitivity for energy to fracture relative to the unfilled polymer. Rubber–filled polymers have a reduced notch sensitivity for strength relative to the unfilled polymer, but the notch sensitivity for energy to fracture may be either increased or decreased, depending upon the system. The energy to fracture for notched specimens correlates better with Izod impact strength than does the energy to fracture for unnotched specimens. It is recommended that notched stress–strain specimens be routinely measured along with unnotched specimens.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here