z-logo
Premium
Poisson's ratio for rigid plastic foams
Author(s) -
Rinde J. A.
Publication year - 1970
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1970.070140801
Subject(s) - poisson's ratio , polystyrene , materials science , compression (physics) , expanded polystyrene , poisson distribution , tension (geology) , composite material , yield (engineering) , polyurethane , compression ratio , strain (injury) , polymer , thermodynamics , mathematics , physics , statistics , medicine , internal combustion engine
Poisson's ratio for several low‐density plastic foams has been determined in both tension and compression. For polystyrene bead foams and a polyurethane foam, Poisson's ratio is greater in tension than compression. In compression, Poisson's ratio is not linear, showing a larger value below the yield strain and a value near zero for high strains. For 0.05 and 0.10 g/cc polystyrene bead foam, Poisson's ratios are 1/3 in tension and 1/4 in compression below the yield strain; at higher strains, the value in compression is in the range 0.03–0.07.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom