Premium
Some observations on the sorption of moisture by elastomeric solid propellant binders
Author(s) -
Potts J. C.
Publication year - 1965
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1965.070090518
Subject(s) - propellant , sorption , materials science , elastomer , thermodynamics , saturation (graph theory) , solubility , moisture , composite material , polymer chemistry , adsorption , chemistry , organic chemistry , physics , mathematics , combinatorics
The isotherms for the sorption of water by six rubbery binders of the sort used in solid propellants have been measured at room temperature. The solubility at saturation ranged from 0.003 to 0.030 g. of water/g. of binder. The Flory‐Huggins equation was used to calculate an upper limit for the x 1 interaction parameters; these ranged from 2.6 to 4.7. The isotherms were best fitted by a modified Henry's law equation:\documentclass{article}\pagestyle{empty}\begin{document}$ {p \mathord{\left/ {\vphantom {p {p_0 = ({1 \mathord{\left/ {\vphantom {1 {k)}}} \right. \kern-\nulldelimiterspace} {k)}}[{{N_1 } \mathord{\left/ {\vphantom {{N_1 } {(N_1 + N_2 )] = ({1 \mathord{\left/ {\vphantom {1 {k){S \mathord{\left/ {\vphantom {S {[S + (\alpha - 1)S_{\max } ]}}} \right. \kern-\nulldelimiterspace} {[S + (\alpha - 1)S_{\max } ] \right. \kern-\nulldelimiterspace} {k){S \mathord{\left/ {\vphantom {S {[S + (\alpha - 1)S_{\max } ]}}} \right. \kern-\nulldelimiterspace} {[S + (\alpha - 1)S_{\max } ] \right. \kern-\nulldelimiterspace} {(N_1 + N_2 )] = ({1 \mathord{\left/ {\vphantom {1 {k){S \mathord{\left/ {\vphantom {S {[S + (\alpha - 1)S_{\max } ]}}} \right. \kern-\nulldelimiterspace} {[S + (\alpha - 1)S_{\max } ] \right. \kern-\nulldelimiterspace} {k){S \mathord{\left/ {\vphantom {S {[S + (\alpha - 1)S_{\max } ]}}} \right. \kern-\nulldelimiterspace} {[S + (\alpha - 1)S_{\max } ] \right. \kern-\nulldelimiterspace} {p_0 = ({1 \mathord{\left/ {\vphantom {1 {k)}}} \right. \kern-\nulldelimiterspace} {k)}}[{{N_1 } \mathord{\left/ {\vphantom {{N_1 } {(N_1 + N_2 )] = ({1 \mathord{\left/ {\vphantom {1 {k){S \mathord{\left/ {\vphantom {S {[S + (\alpha - 1)S_{\max } ]}}} \right. \kern-\nulldelimiterspace} {[S + (\alpha - 1)S_{\max } ] \right. \kern-\nulldelimiterspace} {k){S \mathord{\left/ {\vphantom {S {[S + (\alpha - 1)S_{\max } ]}}} \right. \kern-\nulldelimiterspace} {[S + (\alpha - 1)S_{\max } ] \right. \kern-\nulldelimiterspace} {(N_1 + N_2 )] = ({1 \mathord{\left/ {\vphantom {1 {k){S \mathord{\left/ {\vphantom {S {[S + (\alpha - 1)S_{\max } ]}}} \right. \kern-\nulldelimiterspace} {[S + (\alpha - 1)S_{\max } ] \right. \kern-\nulldelimiterspace} {k){S \mathord{\left/ {\vphantom {S {[S + (\alpha - 1)S_{\max } ]}}} \right. \kern-\nulldelimiterspace} {[S + (\alpha - 1)S_{\max } ] $\end{document} The possible significance of the parameters k , α, β, and S max is discussed.