z-logo
Premium
Cut growth and fatigue of rubbers. II. Experiments on a noncrystallizing rubber
Author(s) -
Lake G. J.,
Lindley P. B.
Publication year - 1964
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1964.070080212
Subject(s) - natural rubber , tearing , materials science , composite material , ultimate tensile strength , growth rate , mathematics , geometry
Tensile fatigue failure of a gum vulcanizate of noncrystallizing SBR can be accounted for by the growth of small flaws initially present in the rubber. Fatigue of crystallizing natural rubber was shown in Part I to be attributable to the same cause. Cut growth results are interpreted in terms of the tearing energy theory of Rivlin and Thomas. SBR exhibits cut growth under both static and dynamic conditions; in each case the rate is approximately proportional to the fourth power of the tearing energy. Variation of the dynamic cut growth rate with frequency can be explained by the summation of a timedependent static component of growth and a cyclic component not dissimilar to that occurring in natural rubber. Fatigue failure, under both static and dynamic conditions, is predicted from the cut growth results. These predictions are found to account quantitatively for experimentally observed fatigue lives when a suitable value is assumed for the initial flaw size. Fatigue lives at different temperatures correlate well with cut growth results obtained by Greensmith and Thomas over the same temperature range. The results are compared to those obtained previously for natural rubber, and possible reasons for the differences in fatigue behavior of crystallizing and noncrystallizing rubbers are discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here