Premium
Fluidized‐bed reactor modeling for polyethylene production
Author(s) -
Fernandes Fabiano André Narciso,
Ferrareso Lona Liliane Maria
Publication year - 2001
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1442
Subject(s) - fluidized bed , polyethylene , materials science , bubble , polymer , emulsion , emulsion polymerization , particle (ecology) , chemical engineering , thermodynamics , mechanics , composite material , polymerization , engineering , physics , oceanography , geology
Gas‐phase technology for polyethylene production has been widely used by industries around the world. A good model for the reactor fluid dynamics is essential to properly set the operating conditions of the fluidized‐bed reactor. The fluidized‐bed model developed in this work is based on a steady‐state model, incorporating interactions between separate bubble, emulsion gas phase, and emulsion solid polymer particles. The model is capable not only of computing temperature and concentration gradients for bubble and emulsion phases, calculating polymer particle mean diameter throughout the bed and polyethylene production rate, but also of pinpointing the appearance of hot spots and polymer meltdown. The model differs from conventional well‐mixed fluidized‐bed models by assuming that the particles segregate within the bed according to size and weight differences. The model was validated using literature and patent data, presenting good representation of the behavior of the fluidized‐bed reactor used in ethylene polymerization. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 321–332, 2001