Premium
Combustion characteristics of halogen‐free flame‐retarded polyethylene containing magnesium hydroxide and some synergists
Author(s) -
Wang Zhengzhou,
Qu Baojun,
Fan Weicheng,
Huang Ping
Publication year - 2001
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1430
Subject(s) - limiting oxygen index , linear low density polyethylene , fire retardant , polyethylene , cone calorimeter , magnesium , combustion , ethylene vinyl acetate , materials science , polymer chemistry , char , chemistry , organic chemistry , copolymer , composite material , polymer
Halogen‐free flame‐retarded polyethylene materials have been prepared by using magnesium hydroxide (MH) as a flame retardant combined with red phosphorous (RP) and expandable graphite (EG) as synergists. The effects of these additives on the combustion behavior of the filled linear low density polyethylene (LLDPE), such as a limiting oxygen index (LOI), the rate of heat release (RHR), the specific extinction area (SEA), etc., have been studied by the LOI determination and the cone calorimeter test. The results show that RP and EG are good synergists for improving the flame retardancy of LLDPE/MH formulations. In addition, a suitable amount of ethylene and vinyl acetate copolymer (EVA) added in the formulations can increase the LOI values while promoting the char formation and showing almost no effect on the RHR and SEA values. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 206–214, 2001