Premium
Studies on castor oil–based polyurethane/polyacrylonitrile interpenetrating polymer network for toughening of unsaturated polyester resin
Author(s) -
Guhanathan S.,
Hariharan R.,
Sarojadevi M.
Publication year - 2004
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.13653
Subject(s) - materials science , polyurethane , polyacrylonitrile , ultimate tensile strength , interpenetrating polymer network , composite material , castor oil , flexural strength , thermal stability , toluene diisocyanate , polymer , polymer chemistry , chemical engineering , chemistry , organic chemistry , engineering
Tricomponent interpenetrating polymer network (IPN) systems involving castor oil, toluenediisocyanate (TDI), acrylonitrile (AN), ethylene glycol diacrylate (EGDA), and general‐purpose unsaturated polyester resin (GPR) were prepared with various compositions. The structures of the IPNs at various stages were confirmed using FTIR. The thermal stability of the IPNs was studied using TGA, which indicated that the polyurethane/polyacrylonitrile/GPR (PU/PAN/GPR) IPN underwent single‐stage decomposition, showing perfect compatibility at the IPN composition of 10 : 90 (PU/PAN : GPR). The mechanical properties such as tensile, flexural, impact, and hardness for the IPNs with various compositions were determined. It was found that the tensile strength of the GPR matrix was decreased and flexural and impact strengths were increased upon incorporating PU/PAN networks. The swelling properties in water and toluene were also studied. The morphology of the IPNs was studied using SEM. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 817–829, 2004