z-logo
Premium
Properties of crosslinked blends of pellethene and multiblock polyurethane containing poly(ethylene oxide) for biomaterials
Author(s) -
Yoo HyeJin,
Kim HanDo
Publication year - 2003
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.13377
Subject(s) - polyurethane , materials science , ethylene oxide , polymer chemistry , ethylene glycol , polybutadiene , diol , polymer blend , ultimate tensile strength , polypropylene glycol , hydroxyl terminated polybutadiene , chemical engineering , copolymer , composite material , polymer , polyethylene glycol , engineering
A series of multiblock polyurethanes, containing various poly(ethylene oxide) (PEO; number‐average molecular weight = 400–3400) contents (0–80 wt %) and prepared from hexamethylene diisocyanate/PEO/poly(dimethylsiloxane) diol/polybutadiene diol/1,4‐butanediol, were used as modifying additives (30 wt %) to improve the properties of biomedical‐grade Pellethene. Different molecular weights of PEO were used to keep poly(ethylene glycol) at a fixed molar content, if possible, although the PEO content, related to the PEO block length in the multiblock polyurethanes, was varied from 0 to 80 wt %. The hydrophilic PEO component was introduced through the addition of PEO‐containing polyurethanes and dicumyl peroxide as a crosslinking agent in a Pellethene matrix. As the PEO content (PEO block length) increased, the hydrogen‐bonding fraction of the crosslinked Pellethene/multiblock polyurethane blends increased, and this indicated an increase in the phase separation with an increase in the PEO content in the crosslinked Pellethene/multiblock polyurethane blends. According to electron spectroscopy for chemical analysis, the ratio of ether carbon to alkyl carbon in the crosslinked Pellethene/multiblock polyurethane blends increased remarkably with increasing PEO content. The water contact angle of the crosslinked Pellethene/multiblock polyurethane blend film surfaces decreased with increasing PEO content. The water absorption and mechanical properties (tensile modulus, strength, and elongation at break) of the crosslinked Pellethene/multiblock polyurethane blend films increased with increasing PEO content. The platelet adhesion on the crosslinked Pellethene/multiblock polyurethane blend film surfaces decreased significantly with increasing PEO content. These results suggest that crosslinked Pellethene/multiblock polyurethane blends containing the hydrophilic component PEO may have potential for biomaterials that come into direct contact with blood. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2348–2357, 2004

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom