Premium
Processing and characterization of epoxy–anhydride‐based intercalated nanocomposites
Author(s) -
Torre L.,
Frulloni E.,
Kenny J. M.,
Manferti C.,
Camino G.
Publication year - 2003
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.12988
Subject(s) - thermogravimetric analysis , epoxy , thermal stability , nanocomposite , materials science , differential scanning calorimetry , thermosetting polymer , montmorillonite , kinetics , polymerization , polymer chemistry , chemical engineering , composite material , polymer , thermodynamics , physics , quantum mechanics , engineering
A study of the kinetic and thermal characterization of an epoxy resin (DGEBA) polymerized with a methyl tetrahydrophthalic anhydride reinforced with montmorillonite‐layered silicates is presented. The nanoreinforcement used was compatibilized by exchanging the cations between the silicate layers with alkylammonium salts, containing long hydrocarbon chains. The aim of this study was to develop new nanocomposites based on thermoset resins with improved thermal stability, suitable for electronic applications. Differential scanning calorimetry was used here to produce the polymerization kinetics data, while thermogravimetric analysis was used to evaluate the effects of the nanoreinforcements on the thermal stability and to analyze the degradation kinetics. Unexpected strong effects of the nanocomposite on the polymerization kinetics of the epoxy–anhydride system were detected and evaluated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2532–2539, 2003