z-logo
Premium
Synthesis, thermal behavior, and cone calorimetry of organophosphorus epoxy materials
Author(s) -
Hussain M.,
Varley R. J.,
Zenka M.,
Simon G. P.
Publication year - 2003
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.12983
Subject(s) - epoxy , diglycidyl ether , differential scanning calorimetry , thermogravimetric analysis , materials science , diamine , bisphenol a , calorimetry , polymer chemistry , composite material , chemistry , organic chemistry , physics , thermodynamics
Abstract An organophosphorus epoxy resin with diglycidyl ether of bisphenol A (DGEBA), which has improved fire performance, was synthesized from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and DGEBA. The epoxy resin was then cured with an isomeric mixture of 3,5‐diethyltoluene‐2,4‐diamine and 3,5‐diethyltoluene‐2,6‐diamine. The reaction kinetics were measured by Fourier transform IR, 1 H‐NMR, and differential scanning calorimetry. The effect of the incorporation of a phosphorus species into the epoxy network structures was also measured using thermogravimetric, thermal conductivity, and dynamic mechanical thermal analyses. The fire performance was measured using cone calorimetry, which showed that a significant improvement was achieved by the addition of only 1–4% phosphorus into the epoxy backbone. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3696–3707, 2003

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here