Premium
Structure–property relationship of starch‐filled chain‐extended polyurethanes
Author(s) -
Kendaganna Swamy B. K.
Publication year - 2003
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.12920
Subject(s) - thermogravimetric analysis , starch , materials science , thermal stability , polyurethane , ultimate tensile strength , composite material , polymer chemistry , chemical engineering , chemistry , organic chemistry , engineering
Chain‐extended polyurethane (PU) elastomers were prepared using castor oil with 4,4′‐methylene bis (phenyl isocyanate) (MDI) as a crosslinker and 4,4′‐diamino diphenyl sulphone (DDS) as an aromatic diamine chain extender. A series of starch‐filled (from 5 to 25% wt/wt) diamines chain‐extended PUs have been prepared. The starch‐filled PU composites were characterized for physico‐mechanical properties viz, density, surface hardness, tensile strength, and percentage elongation at break. Thermal stability of PU/starch have been carried out by using thermogravimetric analyzer (TGA). Thermal degradation process of PU/starch were found to proceed in three steps. TGA thermograms of PU/starch shows that all systems were stable upto 235°C, and maximum weight loss occur at temperature 558°C. The microcrystalline parameters such as crystal size (〈N〉) and lattice strain (g in %) of PU/starch have been established using wide‐angle X‐ray scattering (WAXS) method. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2945–2954, 2003