Premium
Preparation and characterization of alginate hydrogel membranes crosslinked using a water‐soluble carbodiimide
Author(s) -
Xu J. B.,
Bartley J. P.,
Johnson R. A.
Publication year - 2003
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.12713
Subject(s) - membrane , pervaporation , swelling , carbodiimide , differential scanning calorimetry , materials science , chemical engineering , polymer chemistry , crystallinity , nuclear chemistry , chromatography , permeation , chemistry , composite material , biochemistry , physics , engineering , thermodynamics
The preparation of alginate hydrogel membranes by the film immersion method was optimized for maximum crosslinking using swelling measurements as an indicator of the degree of crosslinking. The variables investigated were the concentration of the nonsolvent (ethanol) for sodium alginate, water‐soluble carbodiimide (WSC) concentration, and pH of the crosslinking medium. Optimum conditions resulted when the crosslinking medium contained 60 vol % ethanol and 100 m M WSC at pH 4. Membranes prepared using different ethanol concentrations (100 m M WSC, pH 4) and different WSC concentrations (60 vol % ethanol, pH 4) were investigated using infrared spectroscopy. The spectra showed the characteristic ester linkage (crosslinking) band at 1698 cm −1 in cases where swelling measurements indicated that crosslinking had occurred. Differential scanning calorimetry of noncrosslinked and crosslinked membranes indicated that crosslinking increased the crystallinity of the membrane. Durability trials showed that membranes crosslinked using the optimum conditions determined in this work retained all weight when immersed in water for 32 days. Membranes prepared using these conditions possessed the characteristics required for use in the pervaporation separation of ethanol–water mixtures. These membranes also have potential as protective coatings for hydrophobic, microporous membranes in the membrane distillation and osmotic distillation concentration of feeds containing surface active components. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 747–753, 2003