z-logo
Premium
Nanocomposites of poly(trimethylene terephthalate) with organoclay
Author(s) -
Ou ChengFang
Publication year - 2003
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.12516
Subject(s) - organoclay , thermogravimetric analysis , nanocomposite , materials science , thermal stability , intercalation (chemistry) , differential scanning calorimetry , crystallization , composite material , chemical engineering , polymer chemistry , chemistry , organic chemistry , physics , engineering , thermodynamics
Abstract Two different kinds of clay were organomodified with cetylpyridinium chloride (CPC) as an intercalation agent. Poly(trimethylene terephthalate) (PTT)/organoclay nanocomposites were prepared by the solution intercalation method. Wide‐angle X‐ray diffraction (WAXD) indicated that the layers of clay were intercalated by CPC and the interlayer spacing was a function of the cationic exchange capacity (CEC) of the clay: the higher the CEC, the larger the interlayer spacing is. The WAXD studies showed that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay. From the results of differential scanning calorimetry analysis it was found that clay behaves as a nucleating agent and enhances the crystallization rate of PTT. The maximum enhancement of the crystallization rate for the nanocomposites was observed in nanocomposites containing about 5 wt % organoclay with a range of 1–15 wt %. The thermal stability of the nanocomposites was enhanced by the addition of 1–10 wt % organoclay as found from thermogravimetric analysis. The thermal stability of the PTT/organoclay nanocomposites was related to the organoclay content and the dispersion in the PTT matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3315–3322, 2003

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here