Premium
Curing and toughening of a styrene‐modified epoxy resin
Author(s) -
Yoon TaeHo,
Mcgrath James E.
Publication year - 2001
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1241
Subject(s) - materials science , epoxy , thermogravimetric analysis , curing (chemistry) , styrene , arylene , composite material , monomer , diglycidyl ether , fracture toughness , differential scanning calorimetry , polymer chemistry , copolymer , polymer , bisphenol a , chemistry , alkyl , organic chemistry , physics , aryl , thermodynamics
Abstract A commercially available epoxy resin (E907) formulated with a viscosity‐reducing styrene monomer and several additives was subjected to thermal cure studies and mechanical property measurements. Thermoplastic poly(arylene ether sulfone) (PES) and poly(arylene ether phosphine oxide) (PEPO) with reactive amine or hydroxyl end groups were utilized to toughen and co‐cure with the system. The cure cycle was optimized and the networks were analyzed via differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analyzer, scanning electron microscopy, sol–gel extractions, and fracture toughness. A model epoxy resin was prepared from a tetrafunctional epoxy, e.g., MY722, difunctional EPON828, styrene monomer, and benzoyl peroxide initiator (BPO), and was evaluated as a control to assess the possible role of the styrene monomer. The optimized cure cycle for E907 was 6 h at 93°C, followed by a postcure of 2 h at 204°C. The fracture toughness of E907 was increased only marginally with PES and PEPO. In contrast, the model epoxy resin demonstrated a positive effect due to the styrene monomer and BPO and exhibited significantly increased fracture toughness with PES modification. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1504–1513, 2001