Premium
Liquid‐crystalline copolyester/clay nanocomposites
Author(s) -
Zhang Guangli,
Jiang Cuihong,
Su Chenyu,
Zhang Hongzhi
Publication year - 2003
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.12344
Subject(s) - copolyester , nanocomposite , materials science , montmorillonite , polymer chemistry , condensation polymer , organoclay , terephthalic acid , intercalation (chemistry) , glass transition , polymer , benzoic acid , chemical engineering , organic chemistry , composite material , chemistry , polyester , engineering
A series of novel polymer–clay nanocomposites, that is, liquid‐crystalline copolyester/montmorillonite (MMT) nanocomposites, were synthesized by the intercalation polycondensation of terephthalic acid, p ‐acetoxy benzoic acid, and 1,2‐diacetoxy benzene in the presence of different organically modified montmorillonites (OMt's). The OMt's were prepared by the ion exchange of MMT with octadecylamine hydrochloride, p ‐aminobenzoic acid hydrochloride, or lysine hydrochloride. X‐ray diffraction and transmission electron microscopy studies indicated that the inorganic cations in the MMT interlayers were already exchanged by organic onium ions and that the OMt intercalated with p ‐aminobenzoic acid or lysine was good for obtaining more delaminated clay nanocomposites. The glass‐transition temperature and modulus of the nanocomposites increased compared with those of the pure polymer, whereas the isotropic temperature decreased. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3155–3159, 2003