Premium
Pervaporation membranes based on imide‐containing poly(amic acid) and poly(phenylene oxide)
Author(s) -
Polotskaya G. A.,
Kuznetsov Y. P.,
Goikhman M. Y.,
Podeshvo I. V.,
Maricheva T. A.,
Kudryavtsev V. V.
Publication year - 2003
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.12211
Subject(s) - pervaporation , membrane , imide , phenylene , polymer chemistry , materials science , polyimide , methanol , aqueous solution , cyclohexane , oxide , chemical engineering , polymer , organic chemistry , chemistry , permeation , composite material , layer (electronics) , biochemistry , engineering
Three imide‐containing poly(amic acids) were synthesized and used for homogeneous and composite membrane preparation. The transport properties of composite membranes consisting of an imide‐containing poly(amic acid) top layer on an asymmetric porous poly(phenylene oxide) support were studied in the pervaporation of aqueous solutions of organic liquids (ethanol, isopropanol, acetone, and ethylacetate) and organic/organic mixtures (ethylacetate/ethanol, methanol/cyclohexane). For most of the aqueous/organic mixtures, the composite membranes exhibited dehydration properties. Dilute aqueous solutions of ethylacetate were an exception. In these solutions, the composite membranes exhibited organophilic properties, high permeability, and selectivity with respect to ethylacetate. In the pervaporation of methanol/cyclohexane mixtures, methanol was removed with very high selectivity. To account for specific features of pervaporation on the composite membranes, the sorption and transport properties of homogeneous membranes prepared from polymers comprising the composite membrane [imide‐containing poly(amic acids) and poly(phenylene oxide)] were studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2361–2368, 2003