z-logo
Premium
Mechanochemical improvement of the flame‐retardant and mechanical properties of zinc borate and zinc borate–aluminum trihydrate‐filled poly(vinyl chloride)
Author(s) -
Pi Hong,
Guo Shaoyun,
Ning Yong
Publication year - 2003
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.12202
Subject(s) - zinc borate , fire retardant , limiting oxygen index , materials science , zinc , vinyl chloride , polyvinyl chloride , aluminium , boron , polymer chemistry , composite material , chemical engineering , char , organic chemistry , chemistry , copolymer , polymer , metallurgy , pyrolysis , engineering
In this study, the effect of the high‐energy mechanical milling of a mixture of poly(vinyl chloride) (PVC) with zinc borate (ZB) or ZB–aluminum trihydrate (ATH), a mixture of ZB and ATH, on the flame‐retardant and mechanical properties of ZB and ZB–ATH filled PVC was examined. The high‐energy mechanical milling of PVC/ZB and the PVC/ZB–ATH mixture produced chemical bonding between PVC and ZB or ZB–ATH, increasing the interfacial interaction of PVC/ZB and PVC/ZB–ATH blends, which resulted in a great increase in the limiting oxygen index, the impact and yield strengths, and the elongation at break of PVC/ZB and PVC/ZB–ATH blends. The results from ultraviolet spectroscopy and gas chromatography–mass spectroscopy show that mechanochemical modification of ZB and ZB–ATH much more effectively suppressed the release of aromatic compounds in PVC/ZB and PVC/ZB–ATH blends during burning. Mechanochemical modification provided an excellent route for the improvement of the flame‐retardant and mechanical properties of flame‐retardant‐additive‐filled PVC. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 753–762, 2003

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom