Premium
Melt polymerization of bisphenol‐A and diphenyl carbonate in a semibatch reactor
Author(s) -
Woo BooGon,
Choi Kyu Yong,
Song Kwang Ho,
Lee Sang Ho
Publication year - 2001
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1211
Subject(s) - diphenyl carbonate , polymerization , polycarbonate , carbonate , polymer chemistry , condensation polymer , bisphenol a , chemistry , phenol , polymer , chemical engineering , materials science , organic chemistry , transesterification , catalysis , epoxy , engineering
The effect of thermodynamic phase equilibrium on the kinetics of semibatch melt polycondensation of bisphenol‐A and diphenyl carbonate was studied for the synthesis of polycarbonate. In the melt‐polymerization process, a partial loss of diphenyl carbonate occurs as the reaction by‐product phenol is removed from the reactor. To obtain a high molecular weight polymer under high temperature and low‐pressure conditions, a stoichiometric mol ratio of the two reactive end groups needs to be maintained during the polymerization. In this work, vapor–liquid equilibrium data for a binary mixture of phenol and diphenyl carbonate are reported and they are used in conjunction with the Wilson equation to calculate the exact amounts of diphenyl carbonate and phenol returned from a reflux column to the reactor. A good agreement between the reactor model simulations and the experimental polymerization data was obtained. It was also observed that diphenyl carbonate is quickly consumed during the early stage of polymerization and the fraction of evaporated diphenyl carbonate refluxed to the reactor is essentially constant during this period. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1253–1266, 2001