z-logo
Premium
Crosslinking cotton with poly(itaconic acid) and in situ polymerization of itaconic acid: Fabric mechanical strength retention
Author(s) -
Yang Charles Q.,
Hu Cheng,
Lickfield Gary C.
Publication year - 2003
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.12043
Subject(s) - ultimate tensile strength , itaconic acid , materials science , cellulose , polymerization , composite material , polymer chemistry , aqueous solution , polymer , chemistry , organic chemistry , copolymer
Polycarboxylic acids have been used as nonformaldehyde durable press finishing agents for cotton fabrics. Previously, we found that itaconic acid (IA) polymerized in situ on cotton fabric and also in an aqueous solution in the presence of a K 2 S 2 O 8 /NaH 2 PO 2 initiation system. Both poly(itaconic acid) (PIA) and the polymer formed by in situ polymerization of IA are able to crosslink cotton cellulose, thus imparting wrinkle resistance to cotton. In this research, we compared the performance of the cotton fabric crosslinked by PIA and that crosslinked by in situ polymerization of IA. The fabric treated with PIA and that treated with IA had similar wrinkle recovery angles. The cotton fabric treated with IA, however, lost more tensile strength than that treated with PIA due to cellulose degradation. We determined the magnitude of the fabric tensile strength loss attributed to crosslinking by separating the tensile strength loss due to cellulose degradation from the total tensile strength loss, and found that the tensile strength loss caused by crosslinking for the fabric treated with PIA was significantly higher than that for the fabric treated with IA. This can probably be attributed to more concentrated crosslinkages formed on the near surface of the PIA‐treated cotton fabric. PIA had poorer penetration into the amorphous cellulose region in fiber interior due to its much larger molecular size, thus increasing its concentration on the fabric's near surface. The data also suggest that more concentrated crosslinkages on the fabric surface reduced fabric abrasion resistance. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2023–2030, 2003

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here