Premium
Preparation of microcellular poly(ethylene terephthalate) and its properties
Author(s) -
Guan Rong,
Wang Biqin,
Lu Deping
Publication year - 2003
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.11878
Subject(s) - materials science , differential scanning calorimetry , dynamic mechanical analysis , crystallinity , composite material , ultimate tensile strength , crystallization , dynamic modulus , thermal analysis , thermal , polymer , chemical engineering , thermodynamics , physics , engineering
Abstract Engineering plastics poly(ethylene terephthalate) (PET) is relatively difficult to process microcellularly compared to general thermal plastics because of its low melting viscosity. A new method was developed to microcellularly process PET in this study with a general hydraulic press above PET's crystallization temperature and below its melting temperature within times of a few minutes. A processing window existed in which to prepare microcellular PET under certain foaming time, pressure, temperature, and foaming reagent content scope. The effects of foaming time, temperature, pressure, and foaming reagent content on the thermal, mechanical, and dynamic mechanical thermal properties of microcellular PET foam were investigated. Differential scanning calorimetry (DSC) analysis showed that the transition temperature and crystallinity of microcellular PET had small changes with increasing foaming time. Under some processing conditions used in this study, the tensile strength and breaking extension of microcellular PET foam were both increased at the same time, indicating strengthening and toughening effects. The variation of storage modulus, loss modulus, and tan δ under dynamic mechanical thermal analysis was in accord with DSC analysis and mechanical measurements. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1956–1962, 2003