Premium
Physical properties of silk fibroin/chitosan blend films
Author(s) -
Kweon Haeyong,
Ha Hyun Chul,
Um In Chul,
Park Young Hwan
Publication year - 2001
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.1172
Subject(s) - fibroin , chitosan , oxygen permeability , materials science , ultimate tensile strength , swelling , composite material , silk , elongation , chemical engineering , polymer chemistry , oxygen , chemistry , organic chemistry , engineering
Silk fibroin/chitosan blend films were examined through IR spectroscopy to determine the conformational changes of silk fibroin. The effects of the fibroin/chitosan blend ratios (chitosan content) on the physical and mechanical properties were investigated to discover the feasibility of using these films as biomedical materials such as artificial skin and wound dressing. The mechanical properties of the blend films containing 10–40% chitosan were found to be excellent. The tensile strength, breaking elongation, and Young's modulus were affected by the chitosan contents of the blend films, which were also related to the density and degree of swelling. The coefficient of water vapor permeability of the blend films increased linearly with the chitosan content, and the values of 1000–2000 g m −2 day −1 were comparable to those of commercial wound dressings. Silk fibroin/chitosan blend films had good oxygen and water vapor permeabilities, making them useful as biomaterials. In particular, the blend film containing 40–50% chitosan showed very high oxygen permeability. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 928–934, 2001